New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization

نویسندگان

چکیده

Abstract The Hermite-Hadamard inequality is regarded as one of the most favorable inequalities from research point view. Currently, mathematicians are working on extending, improving, and generalizing this inequality. This article presents conticrete Hermite-Hadamard-Jensen-Mercer type in weighted unweighted forms by using idea majorization convexity together with generalized conformable fractional integral operators. They not only represent continuous discrete compact form but also produce connecting various operators such Hadamard, Katugampola, Riemann-Liouville, conformable, Rieman integrals into single form. Also, two new identities have been investigated pertaining a differentiable function three tuples. By these assuming ∣ f ′ | f^{\prime} q ( > 1 ) {| }^{q}\hspace{0.33em}\left(q\gt 1) convex, we deduce bounds concerning discrepancy terms main inequalities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite-hadamard Type Inequalities via Conformable Fractional Integrals

In this study, a new identity involving conformable fractional integrals is given. Then, by using this identity, some new Hermite-Hadamard type inequalities for conformable fractional integrals have been developed.

متن کامل

Generalized Hermite-Hadamard type inequalities involving fractional integral operators

In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...

متن کامل

Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals

Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named [Formula: see text]-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.

متن کامل

Hermite-Hadamard type inequalities for the generalized k-fractional integral operators

We firstly give a modification of the known Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. We secondly establish several Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. The results presented here, being very general, are p...

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2023

ISSN: ['0420-1213', '2391-4661']

DOI: https://doi.org/10.1515/dema-2022-0225